Modeling of Tool Wear Parameters in High-Pressure Coolant Assisted Turning of Titanium Alloy Ti-6Al-4V Using Artificial Neural Networks

نویسنده

  • D. A. Fadare
چکیده

Titanium alloy (Ti-6Al-4V) can be economically machined with high-pressure coolant (HPC) supply. In this study, an artificial neural network (ANN) model was developed for the analysis and prediction of tool wear parameters when machining Ti-6Al-4V alloy with conventional flow and high-pressure coolant flow, up to 203 bar. Machining trials were conducted at different cutting conditions for both rough and finish turning operations with uncoated carbide (K10 grade) and double TiAlN/TiN, PVD coated carbide (K10 substrate) inserts. The cutting parameters (cutting speed, feed rate, depth of cut, coolant pressure, and tool type) and the process parameters (cutting forces, feed force, machined surface roughness, and circularity) were used as input data set to train the three-layered feedforward, back-propagation artificial neural networks. The networks were trained to predict tool life and wear rate separately. The results show that the correlation coefficients between the neural network predictions and experimental values of tool life, tool wear and wear rate were 0.996 and 0.999, respectively, suggesting the reliability of the neural network model for analysis and optimization of cutting process. (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisit...

متن کامل

Simulation of Tool Rotation and Travelling Speed Effects on Friction Stir Welding of Ti-6Al-4V

In this research, the effects of parameters include tool rotational and traverse speeds were investigated on heat generation and material flow during friction stir welding of Ti-6Al-4V alloy with computational fluid dynamics (CFD) method. Simulation results showed that with increasing of tool rotational and decreasing tool traverse speed, the more frictional heat generates which causes formatio...

متن کامل

On the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear

The current work deals with the analysis of mechanisms involved during the machining process of titanium alloys. Two different materials were chosen for the study: Ti-6Al-4V and Ti-55531. The objective was to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations were focused on the mechanisms of the chip formation proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009